SCIENCE SKILLS (SCIENTIFIC ENQUIRY) ASSESSMENT PROGRESSION STATEMENTS (adapted from Bath Spa University TAPS)

EYFS
Early Learning
Goals

Understanding the World: Describe their immediate environment using knowledge from observation, discussion, stories, non-fiction texts and maps. Explore the natural world around them,

Making observations and drawing pictures of animals and plants. Understand some important processes and changes in the natural world around them, including the seasons and changing states of matter.

STATEMENT	YEAR 1	YEAR 2	YEAR 3	YEAR 4	YEAR 5	YEAR 6
Think critically to	Explore the	Recognise that	Raise own, relevant questions	Suggest ways to approach an	Explore ideas and raise	Plan different types of
ask questions and	world around	questions can be	and understand that	enquiry and plan how to	different kinds of	scientific enquiries (including
generate an	them and ask	answered in	enquiries can be approached	answer own questions, making	questions, selecting the	comparative and fair tests) to
enquiry.	simple	different ways and	in different ways, making	decisions about how to record	most appropriate type	answer their own questions,
	questions.	make a simple plan.	decisions about what	and analyse their findings.	of enquiry to use to	explaining which variables
			observations/data to collect		answer scientific	need to be controlled and
			and how to do this.		questions.	why.
Make	Observe closely,	Perform basic tests	Identify which observations/	Collect data from their own	Take measurements,	Make own decisions about
observations and	using simple	and take simple	measurements in simple	observations and, where	using a range of	what observations/
take	equipment.	measurements.	practical enquiries,	appropriate, take accurate	scientific equipment,	measurements to take and
measurements			comparative and fair tests,	measurements using standard	with increasing accuracy	how long for, whether to
and record these			and use equipment accurately	units, using a range of	and precision, taking	repeat them, and choose the
appropriately.			with support where needed.	equipment, deciding how to set	repeat readings when	most appropriate equipment
				up a simple fair test.	appropriate.	with which to do this.
Use appropriate	Talk about what	Gather and record	Report on findings from	Gather, record, classify and	Record data and results	Decide how to record their
vocabulary and	they found out	data to help in	enquiries, including oral and	present data in a variety of	of increasing complexity	data, then use relevant
scientific diagrams	and how they	answering questions	written explanations, displays	ways to help in answering	using scientific diagrams	scientific language and
when recording	found it out.	and use appropriate	or presentations of results	questions. Record and report	and labels, classification	illustrations to discuss,
and reporting on		scientific vocabulary	and conclusions.	on findings using simple	keys, tables, and graphs,	communicate and justify their
findings.		to reporting on		scientific language, drawings,	using appropriate	scientific ideas and talk about
		findings.		labelled diagrams, keys, bar	scientific language.	how scientific ideas have
				charts, and tables.		developed over time.
Make connections	Identify and	Begin to notice	Talk about criteria for	Begin to look for naturally	Use and develop keys	Report and present findings
and comparisons,	classify, grouping	patterns and	grouping, sorting and	occurring patterns and	and other records to	from enquiries, including
noticing patterns,	according to	relationships and	classifying and identify	relationships and decide what	identify, classify and	conclusions and causal
changes and	simple features.	changes over time.	differences, similarities or	data to collect to identify them.	describe living things	relationships Notice different
relationships.			changes related to simple		and materials, and	causal relationships in their
			scientific ideas and processes.		identify patterns that	data and identify evidence
					might be found in the	which supports or refutes
					natural environment.	their ideas.

Use scientific	Ask people	Use simple	Use straightforward scientific	Recognise when secondary	Recognise which	Identify and evaluate
evidence to	questions to gain	secondary sources	evidence to answer questions	sources may help answer a	secondary sources will	scientific evidence (their own
answer questions	scientific	to find information	or to support their findings.	question that practical	be useful to their	and others') that has been
or support	information.	and answers to		investigations cannot.	research and separate	used to support or refute
findings.		questions.			opinion from fact.	ideas or arguments.
Think critically to	Use observations	Suggest reasons for	Use results to draw simple	Use results to support thinking	Use test results to make	Explain degree of trust in
discuss findings	and ideas to	results and what	conclusions, make some	and make suggestions, raise	predictions to set up	results and identify when
and make	suggest answers	further tests could	predictions for new values	further questions and make	further comparative and	further tests/observations
suggestions.	to questions.	be carried out.	and suggest improvements.	predictions for these.	fair tests.	might be needed.